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The usefulness of the Pauson-Khand reaction in 
racemic synthesis has been amply demonstrated. "his 
cobalt-mediated uniting of an olefin, an acetylene, and 
carbon monoxide to yield a cyclopentenone has been 
applied on several occasions intramolecularly, as well as 
intermolecularly, for the racemic preparation of mono- 
cyclic, bicyclic, tricyclic, and tetracyclic natural products 
and derivatives.' 

Examples of the use of this methodology for enanti- 
oselective synthesis, though, are scarce. We have re- 
cently shown2 that the intramolecular Pauson-Khand 
bicyclization reaction can be effected asymmetrically and 
have used this version in an enantioselective approach 
to (+)-hirsutene.2e Although a greater challenge, the 
corresponding intermolecular asymmetric Pauson-Khand 
reaction has also been developed recently in our labora- 
t ~ r i e s . ~  In this paper, we report the first application of 
this novel chemistry for a highly enantioselective formal 
total synthesis of the fungal metabolite (+)-brefeldin A 

Brefeldin A has been, since its isolation and elucidation 
many years ago, a molecule of considerable interest to 
chemists, biologists, and pharmacologists because of its 
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well-functionalized macrolide structure and antitumor, 
antiviral, and antifungal  effect^.^ Recently, however, 
with the reports from the NIH of its unique immunosup- 
pressive properties, interest has soared.6 

Our chiral auxiliary-based asymmetric Pauson-Khand 
route to this natural product, abridged in Scheme 1, was 
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designed so as to merge with a previous synthesis at a 
key intermediate (IV, R = OTBDMS, R = r~-C4H9).~ In 
this approach, it was envisioned that the tricyclic enone 
111, synthesized by reaction of a chiral dicobalt hexacar- 
bonyl-alkyne complex I1 with norbornadiene, would 
serve as a chiral cyclopentadienone equivalent7 for the 
preparation of the key intermediate IV through the 
indicated transformations. The complex I1 would be 
prepared from a chiral alcohol I. 
Two enantiopure alcohols, (lS,2R)-(+)-2-phenylcyclo- 

hexanol and (LR,2S,4S)-(+)-10-(methylthio)isoborneol, 
have been examined. Using our recently published 
procedures, each could be easily converted in 62% yield 
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Scheme 2 to its dicobalt hexacarbonyl complex 11,8 which in the 
presence of excess norbornadiene gave stereoselectively 
and in excellent yield the corresponding tricyclic enone 
I11 and its diastereomer as a separable mixture (2.51, 
93% (58% isolated yield of 4a) and 24:1, 82%, respec- 
t i~ely) .~"!~ While 10-(methy1thio)isoborneol in this se- 
quence generates a much more impressive diastereomeric 
excess, 2-phenylcyclohexanol offers the advantage of 
greater availability. 

Iodide 3b, precursor of the requisite vinylic organo- 
metallic reagent, was synthesized in stereochemically 
pure form from (+)-6-heptynd-o1(2a), as indicated in eq 
l.9J0 The enantiopure alcohol could be secured by bakers' 

- dDMS H. OR' 1. Dibal-H; NIS 
R A  2. CH30Na, CH30H R 

(eq 1) 54% 

3 a, R=TMS TBDMSCI, 
2 a, R = R'= H 9 imidazole, 89% 

b, R = H, R' = TBDMS 3 R ~ 4 ~ g ~ i ;  
b , R = H  

C, R = TMS, R'= TBDMS TMSCI, 97% 

yeast (Saccharomyces cereuisiae) reduction of 6-heptyn- 
The iodide was preferred over the corresponding 

stannane5 because it alone could be prepared in stere- 
ochemically homogeneous form and, in addition, was 
found to undergo lithiation in the presence of butyl- 
lithium in diethyl ether, the solvent of choice for Yama- 
mot0 conjugate addition,l' much more rapidly and cleanly 
than the stannane. 

The organocopper reagent 6 (Scheme 2) was generated 
from this vinyllithium derivative with CUI and then 
treated with BFyO(CzHs)z and the a-alkoxy enone 4a or 
4b at -78 "C to give reproducibly in ca. 60% yield after 
chromatography the pure conjugate addition product. No 
adduct resultingfrom B (cis) attack was found. Reductive 
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removal (with recovery) of the auxiliary was best ac- 
complished with S m I P  for the adduct from 4a and with 
Zn in the presence of N&C1I3 for that from 4b to produce 
cleanly the expected tricylic ketone 6 (89% and 76%, 
respectively). 

The Lewis-acid mediated retro Diels-Alder reaction 
under Grieco's  condition^'^ readily furnished a new 
cyclopentenone, which under lithium perchlorate cataly- 
sis experienced uniquely trans ketene acetal addition15 
to yield on acidic workup the known (+)-brefeldin A 
precursor 7. This substance, whose identity was con- 
firmed by direct spectroscopic and chromatographic 
comparison with a sample of the authentic intermediate: 
was shown to be enantiopure (298%) by 13C NMR 
analysis of the acetal derivative formed with (-)-2,3- 
butanediol.16 

In summary, the first application of a novel, intermo- 
lecular asymmetric Pauson-Khand reaction has led to 
a formal total synthesis of natural brefeldin A. Ad- 
ditional synthetic applications and the study of other 
methods for chirality control are planned. 
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